Skip to Content
Hands-On Unsupervised Learning with Python
book

Hands-On Unsupervised Learning with Python

by Giuseppe Bonaccorso
February 2019
Intermediate to advanced
386 pages
9h 54m
English
Packt Publishing
Content preview from Hands-On Unsupervised Learning with Python

Anomaly Detection

In this chapter, we are going to discuss a practical application of unsupervised learning. Our goal is to train models that are either able to reproduce the probability density function of a specific data-generating process or to identify whether a given new sample is an inlier or an outlier. Generally speaking, we can say that the specific goal we want to pursue is finding anomalies, which are often samples that are very unlikely under the model (that is, given a probability distribution p(x) << λ where λ is a predefined threshold) or quite far from the centroid of the main distribution.

In particular, the chapter will comprise of the following topics:

  • A brief introduction to probability density functions and their basic ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Unsupervised Learning Using Python

Hands-On Unsupervised Learning Using Python

Ankur A. Patel
Introduction to Machine Learning with Python

Introduction to Machine Learning with Python

Andreas C. Müller, Sarah Guido

Publisher Resources

ISBN: 9781789348279Supplemental Content