O'Reilly logo

Introduction to R for Business Intelligence by Jay Gendron

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Introducing key elements of time series analysis

You just applied a linear regression model to time series data and saw it did not work. The biggest problem was not a failure in fitting a linear model to the trend. For this well-behaved time series, the average formed a linear plot over time. Where was the problem?

The problem was in seasonal fluctuations. The seasonal fluctuations were one year in length and then repeated. Most of the data points existed above and below the fitted line, instead of on it or near it. As we saw, the ability to make a point estimate prediction was poor. There is an old adage that says even a broken clock is correct twice a day. This is a good analogy for analyzing seasonal time series data with linear regression. ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required