Pipelines

scikit-learn provides a flexible mechanism for creating pipelines made up of subsequent processing steps. This is possible thanks to a standard interface implemented by the majority of classes therefore most of the components (both data processors/transformers and classifiers/clustering tools) can be exchanged seamlessly. The class Pipeline accepts a single parameter steps, which is a list of tuples in the form (name of the component—instance), and creates a complex object with the standard fit/transform interface. For example, if we need to apply a PCA, a standard scaling, and then we want to classify using a SVM, we could create a pipeline in the following way:

from sklearn.decomposition import PCAfrom sklearn.pipeline import ...

Get Machine Learning Algorithms now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.