April 2019
Intermediate to advanced
426 pages
11h 13m
English
The BaggingRegressor class of sklearn.ensemble implements the bagging regressor. We can see how a bagging regressor works for multi-asset predictions of the percentage returns of JPM. The following code illustrates this:
In [ ]: from sklearn.ensemble import BaggingRegressor class BaggingRegressorModel(LinearRegressionModel): def get_model(self): return BaggingRegressor(n_estimators=20, random_state=0) In [ ]: bagging = BaggingRegressorModel() bagging.learn(df_lagged, y, start_date='2018', end_date='2019', lookback_period=10)
We created a class named BaggingRegressorModel that extends LinearRegressionModel, and the get_model() method is overridden to return the bagging regressor. The n_estimators parameter specifies 20