1Additivity of Energy Contributions in Multivalent Complexes

Hans‐Jörg Schneider

FR Organische Chemie, Universität des Saarlandes, 66123, Saarbrücken, Germany

1.1 Introduction

Additivity of individual binding contributions is the very basis of multivalency. In classical coordination chemistry such simultaneous actions are described as the chelate effect. They offer almost unlimited ways to enhance the affinity [1,2,3,4,5,6], and therefore within certain limitations also the selectivity [7] of synthetic and natural complexes. Although additivity is often implied in experimental and theoretical approaches it is subject to many limitations which will be also discussed in the present chapter.

1.2 Additivity of Single Interactions – Examples

If only one kind of interaction is present in a complex one can expect a simple linear correlation between the number n of the individual interaction free energies ΔΔGi and the total ΔGt (Equation 1.1), as illustrated in Figure 1.1 for salt bridges [8]. Even though the organic ion pair complexes are based on cations and anions of very different size and polarizability one observes essentially additive salt bridges; the slope of the correlation indicates an average of ΔΔG = (5 ± 1) kJ/mol per salt bridge. The value of (5 ± 1) kJ/mol is observed in usual buffer solution, but varies as expected from the Debye–Hückel equation with the ionic strength of the solution [9]. Scheme 1.1 shows a corresponding value of K 10 M−1 per salt bridge for typical ...

Get Multivalency now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.