O'Reilly logo

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Power Converters with Digital Filter Feedback Control

Book Description

Power Converter with Digital Filter Feedback Control presents a logical sequence that leads to the identification, extraction, formulation, conversion, and implementation for the control function needed in electrical power equipment systems.

This book builds a bridge for moving a power converter with conventional analog feedback to one with modern digital filter control and enlists the state space averaging technique to identify the core control function in analytical, close form in s-domain (Laplace). It is a useful reference for all professionals and electrical engineers engaged in electrical power equipment/systems design, integration, and management.

  • Offers logical sequences to identification, extraction, formulation, conversion, and implementation for the control function needed
  • Contains step-by-step instructions on how to take existing analog designed power processors and move them to the digital realm
  • Presents ways to extract gain functions for many power converters’ power processing stages and their supporting circuitry

Table of Contents

  1. Cover
  2. Title page
  3. Table of Contents
  4. Copyright
  5. Dedication
  6. Biography
  7. Preface
  8. Note to the Reader
  9. Part I: Forward converter
    1. Introduction
    2. Chapter 1: Forward Converter with Voltage-Mode Control
      1. Abstract
      2. 1.1. Schematic with analog controller and sawtooth
      3. 1.2. Derivation of modulator gain
      4. 1.3. Identify controller and extract transfer function
      5. 1.4. Derivation of digital transfer function
      6. 1.5. Realization of digital transfer function
      7. 1.6. Implementation in circuit form
      8. 1.7. Other approaches and considerations
      9. 1.8. Example
      10. 1.9. Simulation and performance verification
      11. 1.10. Simulations based on MATLAB® SIMULINK
      12. 1.11. Digital PWM
    3. Chapter 2: Forward Converter with Current-Mode Control
      1. Abstract
      2. 2.1. Schematic with analog controller and current feedback
      3. 2.2. Derivation of PWM gain
      4. 2.3. Example
      5. 2.4. Simulation and performance verification
      6. 2.5. Matlab SIMULINK simulation
  10. Part II: Flyback converter
    1. Introduction
    2. Chapter 3: Flyback Converter with Voltage-Mode Control
      1. Abstract
      2. 3.1. Design of DCM power stage
      3. 3.2. Modulator gain
      4. 3.3. Example – one output
      5. 3.4. Simulation and performance verification – one output
      6. 3.5. Example – two outputs
      7. 3.6. Simulation and performance verification – two outputs with feedback from the main
      8. 3.7. Two outputs with alternative feedback
    3. Chapter 4: Flyback Converter with Current-Mode Control
      1. Abstract
      2. 4.1. Current-mode schematic
      3. 4.2. Current-mode PWM gain
      4. 4.3. Example
      5. 4.4. Simulation and performance verification
  11. Part III: Linear regulator and led array driver
    1. Introduction
    2. Chapter 5: Linear Regulator
      1. Abstract
      2. 5.1. Bipolar linear regulator
      3. 5.2. Derivation of modulator gain
      4. 5.3. Example – bipolar linear regulator
      5. 5.4. Bipolar linear regulator in time domain
      6. 5.5. MOSFET linear regulator
      7. 5.6. Example – MOSFET linear regulator
      8. 5.7. MOSFET linear regulator in time domain
    3. Chapter 6: LED Driver
      1. Abstract
      2. 6.1. LED model
      3. 6.2. Driving LED load
      4. 6.3. A typical industrial LED driver structure
      5. 6.4. An LED array driver with voltage-mode control
      6. 6.5. MATLAB SIMULINK evaluation
  12. Part IV: Boost converters
    1. Introduction
    2. Chapter 7: DCM Boost Converter with Voltage-Mode Control
      1. Abstract
      2. 7.1. Selecting discontinuous conduction mode
      3. 7.2. A design example
      4. 7.3. Derivation of modulator gain
      5. 7.4. Designing analog error amplifier
      6. 7.5. Performance of converter with analog control
      7. 7.6. Conversion to digital control
      8. 7.7. Performance of converter with digital control
      9. 7.8. Performance verification with SIMULINK
    3. Chapter 8: DCM Boost Converter with Current-Mode Control
      1. Abstract
      2. 8.1. Schematic with current-mode control
      3. 8.2. PWM gain and modulator
      4. 8.3. Design example
      5. 8.4. Performance verification with MATHCAD
      6. 8.5. Performance verification with SIMULINK
  13. Part V: Special converters
    1. Introduction
    2. Chapter 9: Resonant Converter
      1. Abstract
      2. 9.1. Ripple content
      3. 9.2. Generating sinusoidal waveform
      4. 9.3. Quasiresonant converter
      5. 9.4. Frequency modulation versus pulse width modulation
      6. 9.5. VCO modulation gain
      7. 9.6. Power stage gain
      8. 9.7. Design procedure
      9. 9.8. Close-loop under steady state
      10. 9.9. Modulator gain and loop gain
      11. 9.10. Performance verification with SIMULINK
    3. Chapter 10: Current-Fed Converter
      1. Abstract
      2. 10.1. Merit of current–fed
      3. 10.2. A current-fed converter
      4. 10.3. Derivation of modulator gain and shaping loop gain
      5. 10.4. Time domain performance for analog version
      6. 10.5. I-fed converter with digital control
    4. Chapter 11: Implementing Digital Feedback
      1. Abstract
      2. 11.1. Data input and signal conditioning
      3. 11.2. Digital representation
      4. 11.3. Implementing digital filters
      5. 11.4. Digital PWM
      6. 11.5. Powering digital hardware
  14. Appendix A: State Space Averaging
  15. Appendix B: (1.17) to (1.19) and (1.22) to (1.23) Transform
  16. Appendix C: Setting Up Difference Equation (1.33)
  17. Appendix D: Flyback Converter DCM Operation
  18. References
  19. Index