Ensemble classifiers

Thomas G Dietterich defines Ensemble methods as follows:

"Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their prediction."

You can get more information from http://web.engr.oregonstate.edu/~tgd/publications/mcs-ensembles.pdf.

Ensemble methods create a set of weak classifiers and combine them into a strong classifier. A weak classifier is a classifier that performs slightly better than a classifier that randomly guesses the prediction. Rattle offers two types of ensemble models: Random Forest and Boosting.


Boosting is an ensemble method, so it creates a set of different classifiers. Imagine that you have m classifiers, we can ...

Get Predictive Analytics Using Rattle and Qlik Sense now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.