April 2018
Beginner
552 pages
13h 58m
English
from sklearn.naive_bayes import GaussianNBimport numpy as npimport matplotlib.pyplot as plt
in_file = 'data_multivar.txt'a = []b = []with open(in_file, 'r') as f: for line in f.readlines(): data = [float(x) for x in line.split(',')] a.append(data[:-1]) b.append(data[-1])a = np.array(a)b = np.array(b)
classification_gaussiannb = GaussianNB()classification_gaussiannb.fit(a, b)b_pred = classification_gaussiannb.predict(a)
correctness = 100.0 * (b == b_pred).sum() / a.shape[0]print "correctness of the classification =", round(correctness, ...