Skip to Content
Regression Analysis with R
book

Regression Analysis with R

by Giuseppe Ciaburro, Pierre Paquay, Manoj Kumar, Shaikh Salamatullah
January 2018
Beginner to intermediate
422 pages
9h 47m
English
Packt Publishing
Content preview from Regression Analysis with R

Overfitting detection – cross-validation

Cross-validation is a model evaluation technique generally used to evaluate a machine learning algorithm's performance in making predictions on new datasets that it has not been trained on. In fact, it is not advisable to compare the predictive accuracy of a set of models using the same observations as used for model estimation. Therefore, to evaluate the predictive performance of the models, we must use an independent set of data.

In the cross-validation procedure, a dataset partitions a subset of data used to train the algorithm, and the remaining data is used for testing. Subdivision is usually randomly performed to ensure that the two parts have the same distribution. Because cross-validation does ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Learning Quantitative Finance with R

Learning Quantitative Finance with R

PRASHANT VATS, Dr. Param Jeet
R: Data Analysis and Visualization

R: Data Analysis and Visualization

Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illés, Milán Badics, Ádám Banai, Gergely Daróczi, Barbara Dömötör, Gergely Gabler, Dániel Havran, Péter Juhász, István Margitai, Balázs Márkus, Péter Medvegyev, Julia Molnár, Balázs Árpád Szucs, Ágnes Tuza, Tamás Vadász, Kata Váradi, Ágnes Vidovics-Dancs
Regression Analysis by Example, 4th Edition

Regression Analysis by Example, 4th Edition

Samprit Chatterjee, Ali S. Hadi

Publisher Resources

ISBN: 9781788627306Supplemental Content