Skip to Content
Regression Analysis with R
book

Regression Analysis with R

by Giuseppe Ciaburro, Pierre Paquay, Manoj Kumar, Shaikh Salamatullah
January 2018
Beginner to intermediate
422 pages
9h 47m
English
Packt Publishing
Content preview from Regression Analysis with R

Regularization

As an alternative to the selection methods discussed in the previous sections (forward, backward, stepwise), it is possible to adopt methods that use all predictors but bind or adjust the coefficients by bringing them to very small or zero values (shrinkage). These methods are actually defined as automatic feature selection methods, as they improve generalization. They are called regularization methods and involve modifying the performance function, normally selected as the sum of the squares of regression errors on the training set.

When a large number of variables are available, the least square estimates of a linear model often have a low bias but a high variance with respect to models with fewer variables. Under these conditions, ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Learning Quantitative Finance with R

Learning Quantitative Finance with R

PRASHANT VATS, Dr. Param Jeet
R: Data Analysis and Visualization

R: Data Analysis and Visualization

Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illés, Milán Badics, Ádám Banai, Gergely Daróczi, Barbara Dömötör, Gergely Gabler, Dániel Havran, Péter Juhász, István Margitai, Balázs Márkus, Péter Medvegyev, Julia Molnár, Balázs Árpád Szucs, Ágnes Tuza, Tamás Vadász, Kata Váradi, Ágnes Vidovics-Dancs
Regression Analysis by Example, 4th Edition

Regression Analysis by Example, 4th Edition

Samprit Chatterjee, Ali S. Hadi

Publisher Resources

ISBN: 9781788627306Supplemental Content