Skip to Content
Regression Analysis with R
book

Regression Analysis with R

by Giuseppe Ciaburro, Pierre Paquay, Manoj Kumar, Shaikh Salamatullah
January 2018
Beginner to intermediate
422 pages
9h 47m
English
Packt Publishing
Content preview from Regression Analysis with R

Data Preparation Using R Tools

Real world datasets are very varied: variables can be textual, numerical, or categorical and observations can be missing, false, or wrong (outliers). To perform a proper data analysis, we will understand how to correctly parse a dataset, clean it, and create an output matrix optimally built for regression. To extract knowledge, it is essential that the reader is able to create an observation matrix, using different techniques of data analysis and cleaning.

In the previous chapters, we analyzed how to perform a single and multiple regression analysis while how to carry out a multiple and multinomial logistic regression. But in all cases analyzed, to get the correct indication from the models, the data must be ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Learning Quantitative Finance with R

Learning Quantitative Finance with R

PRASHANT VATS, Dr. Param Jeet
R: Data Analysis and Visualization

R: Data Analysis and Visualization

Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illés, Milán Badics, Ádám Banai, Gergely Daróczi, Barbara Dömötör, Gergely Gabler, Dániel Havran, Péter Juhász, István Margitai, Balázs Márkus, Péter Medvegyev, Julia Molnár, Balázs Árpád Szucs, Ágnes Tuza, Tamás Vadász, Kata Váradi, Ágnes Vidovics-Dancs
Regression Analysis by Example, 4th Edition

Regression Analysis by Example, 4th Edition

Samprit Chatterjee, Ali S. Hadi

Publisher Resources

ISBN: 9781788627306Supplemental Content