Skip to Content
Regression Analysis with R
book

Regression Analysis with R

by Giuseppe Ciaburro, Pierre Paquay, Manoj Kumar, Shaikh Salamatullah
January 2018
Beginner to intermediate
422 pages
9h 47m
English
Packt Publishing
Content preview from Regression Analysis with R

Generalized Additive Model

A GAM is a GLM in which the linear predictor is given by a user-specified sum of smooth functions of the covariates plus a conventional parametric component of the linear predictor. Assume that a sample of n objects has a response variable y and r explanatory variables x1,. . . , xr. In these assumptions, the regression equation becomes:

Here, the functions f1, f2,…., fr are different nonlinear functions on variables x. Into the GAM, the linear relationship between the response and predictors are replaced by several nonlinear smooth functions to model and capture the nonlinearities in the data.

We can see the GAM ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Learning Quantitative Finance with R

Learning Quantitative Finance with R

PRASHANT VATS, Dr. Param Jeet
R: Data Analysis and Visualization

R: Data Analysis and Visualization

Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illés, Milán Badics, Ádám Banai, Gergely Daróczi, Barbara Dömötör, Gergely Gabler, Dániel Havran, Péter Juhász, István Margitai, Balázs Márkus, Péter Medvegyev, Julia Molnár, Balázs Árpád Szucs, Ágnes Tuza, Tamás Vadász, Kata Váradi, Ágnes Vidovics-Dancs
Regression Analysis by Example, 4th Edition

Regression Analysis by Example, 4th Edition

Samprit Chatterjee, Ali S. Hadi

Publisher Resources

ISBN: 9781788627306Supplemental Content