Skip to Content
Deep Learning with Keras
book

Deep Learning with Keras

by Antonio Gulli, Sujit Pal
April 2017
Intermediate to advanced
318 pages
7h 40m
English
Packt Publishing
Content preview from Deep Learning with Keras

Adopting regularization for avoiding overfitting

Intuitively, a good machine learning model should achieve low error on training data. Mathematically, this is equivalent to minimizing the loss function on the training data given the machine learning model built. This is expressed by the following formula.:

However, this might not be enough. A model can become excessively complex in order to capture all the relations inherently expressed by the training data. This increase of complexity might have two negative consequences. First, a complex model might require a significant amount of time to be executed. Second, a complex model can achieve ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Advanced Deep Learning with Keras

Advanced Deep Learning with Keras

Rowel Atienza, Neeraj Verma, Valerio Maggio
Deep Learning with TensorFlow 2 and Keras - Second Edition

Deep Learning with TensorFlow 2 and Keras - Second Edition

Antonio Gulli, Dr. Amita Kapoor, Sujit Pal

Publisher Resources

ISBN: 9781787128422Supplemental Content