Skip to Content
Deep Learning with Keras
book

Deep Learning with Keras

by Antonio Gulli, Sujit Pal
April 2017
Intermediate to advanced
318 pages
7h 40m
English
Packt Publishing
Content preview from Deep Learning with Keras

Checkpointing

Checkpointing is a process that saves a snapshot of the application's state at regular intervals, so the application can be restarted from the last saved state in case of failure. This is useful during training of deep learning models, which can often be a time-consuming task. The state of a deep learning model at any point in time is the weights of the model at that time. Keras saves these weights in HDF5 format (for more information, refer to https://www.hdfgroup.org/) and provides checkpointing using its callback API.

Some scenarios where checkpointing can be useful include the following:

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Advanced Deep Learning with Keras

Advanced Deep Learning with Keras

Rowel Atienza, Neeraj Verma, Valerio Maggio
Deep Learning with TensorFlow 2 and Keras - Second Edition

Deep Learning with TensorFlow 2 and Keras - Second Edition

Antonio Gulli, Dr. Amita Kapoor, Sujit Pal

Publisher Resources

ISBN: 9781787128422Supplemental Content