O'Reilly logo

Learning Bayesian Models with R by Dr. Hari M. Koduvely

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Bayesian averaging

So far, we have learned that simply minimizing the loss function (or equivalently maximizing the log likelihood function in the case of normal distribution) is not enough to develop a machine learning model for a given problem. One has to worry about models overfitting the training data, which will result in larger prediction errors on new datasets. The main advantage of Bayesian methods is that one can, in principle, get away from this problem, without using explicit regularization and different datasets for training and validation. This is called Bayesian model averaging and will be discussed here. This is one of the answers to our main question of the chapter, why Bayesian inference for machine learning?

For this, let's do ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required