References

  1. MacKay D. J. C. Information Theory, Inference and Learning Algorithms. Cambridge University Press. 2003. ISBN-10: 0521642981
  2. MacKayD. J. C. "The Evidence Framework Applied to Classification Networks". Neural Computation. Volume 4(3), 698-714. 1992
  3. MacKay D. J. C. "Probable Networks and Plausible Predictions – a review of practical Bayesian methods for supervised neural networks". Network: Computation in neural systems
  4. Hinton G. E., Rumelhart D. E., and Williams R. J. "Learning Representations by Back Propagating Errors". Nature. Volume 323, 533-536. 1986
  5. MacKay D. J. C. "Bayesian Interpolation". Neural Computation. Volume 4(3), 415-447. 1992
  6. Hinton G. E., Krizhevsky A., and Sutskever I. "ImageNet Classification with Deep Convolutional Neural ...

Get Learning Bayesian Models with R now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.