Skip to Main Content
Learning OpenCV
book

Learning OpenCV

by Gary Bradski, Adrian Kaehler
September 2008
Beginner to intermediate content levelBeginner to intermediate
580 pages
20h 7m
English
O'Reilly Media, Inc.
Content preview from Learning OpenCV

Random Trees

OpenCV contains a random trees class, which is implemented following Leo Breiman's theory of random forests.[259] Random trees can learn more than one class at a time simply by collecting the class "votes" at the leaves of each of many trees and selecting the class receiving the maximum votes as the winner. Regression is done by averaging the values across the leaves of the "forest". Random trees consist of randomly perturbed decision trees and are among the best-performing classifiers on data sets studied while the ML library was being assembled. Random trees also have the potential for parallel implementation, even on nonshared memory systems, a feature that lends itself to increased use in the future. The basic subsystem on which random trees are built is once again a decision tree. This decision tree is built all the way down until it's pure. Thus (cf. the upper right panel of Figure 13-2), each tree is a high-variance classifier that nearly perfectly learns its training data. To counterbalance the high variance, we average together many such trees (hence the name random trees).

Of course, averaging trees will do us no good if the trees are all very similar to each other. To overcome this, random trees cause each tree to be different by randomly selecting a different feature subset of the total features from which the tree may learn at each node. For example, an object-recognition tree might have a long list of potential features: color, texture, gradient magnitude, ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Learning OpenCV 3

Learning OpenCV 3

Adrian Kaehler, Gary Bradski
Learning OpenCV, 2nd Edition

Learning OpenCV, 2nd Edition

Adrian Kaehler, Gary Bradski
Practical OpenCV

Practical OpenCV

Samarth Brahmbhatt
Machine Learning for OpenCV

Machine Learning for OpenCV

Michael Beyeler, Michael Beyeler (USD)

Publisher Resources

ISBN: 9780596516130Supplemental ContentErrata Page