Skip to Content
Machine Learning in Java - Second Edition
book

Machine Learning in Java - Second Edition

by AshishSingh Bhatia, Bostjan Kaluza
November 2018
Intermediate to advanced
300 pages
7h 42m
English
Packt Publishing
Content preview from Machine Learning in Java - Second Edition

Recommendation Engines with Apache Mahout

Recommendation engines are one of the most applied data science approaches in startups today. There are two principal techniques for building a recommendation system: content-based filtering and collaborative filtering. The content-based algorithm uses the properties of the items to find items with similar properties. Collaborative filtering algorithms take user ratings, or other user behaviors, and make recommendations based on what users with similar behaviors liked or purchased.

In this chapter, we will first explain the basic concepts required to understand recommendation engine principles, and then we will demonstrate how to utilize Apache Mahout's implementation of various algorithms in order ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Mastering Java Machine Learning

Mastering Java Machine Learning

Uday Kamath, Krishna Choppella
Java: Data Science Made Easy

Java: Data Science Made Easy

Richard M. Reese, Jennifer L. Reese, Alexey Grigorev

Publisher Resources

ISBN: 9781788474399Supplemental Content