Skip to Content
Machine Learning in Java - Second Edition
book

Machine Learning in Java - Second Edition

by AshishSingh Bhatia, Bostjan Kaluza
November 2018
Intermediate to advanced
300 pages
7h 42m
English
Packt Publishing
Content preview from Machine Learning in Java - Second Edition

Noisy data

In practice, data typically contains errors and imperfections due to various reasons such as measurement errors, human mistakes, and errors of expert judgment in classifying training examples. We refer to all of these as noise. Noise can also come from the treatment of missing values when an example with unknown attribute value is replaced by a set of weighted examples corresponding to the probability distribution of the missing value. The typical consequences of noise in learning data are low prediction accuracy of a learned model in new data and complex models that are hard to interpret and understand for the user.

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Mastering Java Machine Learning

Mastering Java Machine Learning

Uday Kamath, Krishna Choppella
Java: Data Science Made Easy

Java: Data Science Made Easy

Richard M. Reese, Jennifer L. Reese, Alexey Grigorev

Publisher Resources

ISBN: 9781788474399Supplemental Content