Skip to Content
Machine Learning in Java - Second Edition
book

Machine Learning in Java - Second Edition

by AshishSingh Bhatia, Bostjan Kaluza
November 2018
Intermediate to advanced
300 pages
7h 42m
English
Packt Publishing
Content preview from Machine Learning in Java - Second Edition

Evaluating a model

As statistical topic modeling has an unsupervised nature, it makes model selection difficult. For some applications, there may be some extrinsic tasks at hand, such as information retrieval or document classification, for which performance can be evaluated. However, in general, we want to estimate the model's ability to generalize topics regardless of the task.

In 2009, Wallach et al. introduced an approach that measures the quality of a model by computing the log probability of held-out documents under the model. The likelihood of unseen documents can be used to compare models—higher likelihood implies a better model.

We will evaluate the model using the following steps:

  1. Let's split the documents into training and test ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Mastering Java Machine Learning

Mastering Java Machine Learning

Uday Kamath, Krishna Choppella
Java: Data Science Made Easy

Java: Data Science Made Easy

Richard M. Reese, Jennifer L. Reese, Alexey Grigorev

Publisher Resources

ISBN: 9781788474399Supplemental Content