Skip to Content
Machine Learning in Java - Second Edition
book

Machine Learning in Java - Second Edition

by AshishSingh Bhatia, Bostjan Kaluza
November 2018
Intermediate to advanced
300 pages
7h 42m
English
Packt Publishing
Content preview from Machine Learning in Java - Second Edition

Evaluation

A clustering algorithm's quality can be estimated by using the logLikelihood measure, which measures how consistent the identified clusters are. The dataset is split into multiple folds, and clustering is run with each fold. The motivation is that, if the clustering algorithm assigns a high probability to similar data that wasn't used to fit parameters, then it has probably done a good job of capturing the data structure. Weka offers the CluterEvaluation class to estimate it, as follows:

double logLikelihood = ClusterEvaluation.crossValidateModel(model, data, 10, new Random(1));System.out.println(logLikelihood);  

It provides the following output:

-8.773410259774291 
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Mastering Java Machine Learning

Mastering Java Machine Learning

Uday Kamath, Krishna Choppella
Java: Data Science Made Easy

Java: Data Science Made Easy

Richard M. Reese, Jennifer L. Reese, Alexey Grigorev

Publisher Resources

ISBN: 9781788474399Supplemental Content