Skip to Content
Machine Learning in Java - Second Edition
book

Machine Learning in Java - Second Edition

by AshishSingh Bhatia, Bostjan Kaluza
November 2018
Intermediate to advanced
300 pages
7h 42m
English
Packt Publishing
Content preview from Machine Learning in Java - Second Edition

Outlier detection using ELKI

ELKI stands for Environment for Loping KDD applications Index structures, where KDD stands for Knowledge Discovery in Database. It is an open source software used mainly for data mining, with an emphasis on unsupervised learning. It supports various algorithms for cluster analysis and outlier detection. The following are some outlier algorithms:

  • Distance-based outlier detection: This is used to specify two parameters. The object is flagged outlier if its fraction, p, for all the data objects that have a distance above d from c. There are many algorithms, such as DBOutlierDetection, DBOutlierScore, KNNOutlier, KNNWeightOutlier, ParallelKNNOutlier, ParallelKNNWeightOutlier, ReferenceBasedOutlierDetection, and so ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Mastering Java Machine Learning

Mastering Java Machine Learning

Uday Kamath, Krishna Choppella
Java: Data Science Made Easy

Java: Data Science Made Easy

Richard M. Reese, Jennifer L. Reese, Alexey Grigorev

Publisher Resources

ISBN: 9781788474399Supplemental Content