Skip to Content
Mastering Java Machine Learning
book

Mastering Java Machine Learning

by Uday Kamath, Krishna Choppella
July 2017
Beginner to intermediate
556 pages
13h 8m
English
Packt Publishing
Content preview from Mastering Java Machine Learning

Outlier or anomaly detection

Grubbs, in 1969, offers the definition, "An outlying observation, or outlier, is one that appears to deviate markedly from other members of the sample in which it occurs".

Hawkins, in 1980, defined outliers or anomaly as "an observation which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism".

Barnett and Lewis, 1994, defined it as "an observation (or subset of observations) which appears to be inconsistent with the remainder of that set of data".

Outlier algorithms

Outlier detection techniques are classified based on different approaches to what it means to be an outlier. Each approach defines outliers in terms of some property that sets apart some objects ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning in Java - Second Edition

Machine Learning in Java - Second Edition

AshishSingh Bhatia, Bostjan Kaluza

Publisher Resources

ISBN: 9781785880513Supplemental Content