O'Reilly logo

Mastering Java Machine Learning by Krishna Choppella, Dr. Uday Kamath

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Chapter 6. Probabilistic Graph Modeling

Probabilistic graph models (PGMs), also known as graph models, capture the relationship between different variables and represent the probability distributions. PGMs capture joint probability distributions and can be used to answer different queries and make inferences that allow us to make predictions on unseen data. PGMs have the great advantage of capturing domain knowledge of experts and the causal relationship between variables to model systems. PGMs represent the structure and they can capture knowledge in a representational framework that makes it easier to share and understand the domain and models. PGMs capture the uncertainty or the probabilistic nature very well and are thus very useful in applications ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required