Chapter 6. Probabilistic Graph Modeling

Probabilistic graph models (PGMs), also known as graph models, capture the relationship between different variables and represent the probability distributions. PGMs capture joint probability distributions and can be used to answer different queries and make inferences that allow us to make predictions on unseen data. PGMs have the great advantage of capturing domain knowledge of experts and the causal relationship between variables to model systems. PGMs represent the structure and they can capture knowledge in a representational framework that makes it easier to share and understand the domain and models. PGMs capture the uncertainty or the probabilistic nature very well and are thus very useful in applications ...

Get Mastering Java Machine Learning now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.