SPICE for Power Electronics and Electric Power, 3rd Edition

Book description

Power electronics can be a difficult course for students to understand and for professors to teach. Simplifying the process for both, SPICE for Power Electronics and Electric Power, Third Edition illustrates methods of integrating industry standard SPICE software for design verification and as a theoretical laboratory bench.

Helpful PSpice Software and Program Files Available for Download

Based on the author Muhammad H. Rashid’s considerable experience merging design content and SPICE into a power electronics course, this vastly improved and updated edition focuses on helping readers integrate the SPICE simulator with a minimum amount of time and effort. Giving users a better understanding of the operation of a power electronics circuit, the author explores the transient behavior of current and voltage waveforms for each and every circuit element at every stage. The book also includes examples of all types of power converters, as well as circuits with linear and nonlinear inductors.

New in this edition:

  • Student learning outcomes (SLOs) listed at the start of each chapter
  • Changes to run on OrCAD version 9.2
  • Added VPRINT1 and IPRINT1 commands and examples
  • Notes that identify important concepts
  • Examples illustrating EVALUE, GVALUE, ETABLE, GTABLE, ELAPLACE, GLAPLACE, EFREQ, and GFREQ
  • Mathematical relations for expected outcomes, where appropriate
  • The Fourier series of the output voltages for rectifiers and inverters
  • PSpice simulations of DC link inverters and AC voltage controllers with PWM control

This book demonstrates techniques of executing power conversions and ensuring the quality of the output waveforms rather than the accurate modeling of power semiconductor devices. This approach benefits students, enabling them to compare classroom results obtained with simple switch models of devices. In addition, a new chapter covers multi-level converters.

Assuming no prior knowledge of SPICE or PSpice simulation, the text provides detailed step-by-step instructions on how to draw a schematic of a circuit, execute simulations, and view or plot the output results. It also includes suggestions for laboratory experiments and design problems that can be used for student homework assignments.

Table of contents

  1. Cover
  2. Title Page
  3. Copyright Page
  4. Dedication
  5. Table of Contents
  6. Preface
  7. Acknowledgments
  8. Author
  9. PSpice Software and Program Files
  10. Chapter 1 Introduction
    1. 1.1 Introduction
    2. 1.2 Descriptions of SPICE
    3. 1.3 Types of SPICE
    4. 1.4 Types of Analysis
    5. 1.5 Limitations of PSpice
    6. 1.6 Descriptions of Simulation Software Tools
    7. 1.7 PSpice Platform
      1. 1.7.1 PSpice A/D
      2. 1.7.2 PSpice Schematics
      3. 1.7.3 OrCAD Capture
    8. 1.8 PSpice Schematics versus OrCAD Capture
    9. 1.9 SPICE Resources
      1. 1.9.1 Websites with Free SPICE Models
      2. 1.9.2 Websites with SPICE Models
      3. 1.9.3 SPICE and Circuit Simulation Information Sites
      4. 1.9.4 Engineering Magazines with SPICE Articles
    10. Suggested Reading
  11. Chapter 2 Circuit Descriptions
    1. 2.1 Introduction
    2. 2.2 Input Files
    3. 2.3 Nodes
    4. 2.4 Element Values
    5. 2.5 Circuit Elements
    6. 2.6 Element Models
    7. 2.7 Sources
    8. 2.8 Output Variables
    9. 2.9 Types of Analysis
    10. 2.10 PSpice Output Commands
    11. 2.11 Format of Circuit Files
    12. 2.12 Format of Output Files
    13. 2.13 Examples of PSpice Simulations
      1. 2.13.1 Pulse and Step Responses of RLC Circuits
      2. 2.13.2 Sinusoidal and Frequency Responses of RLC Circuits
    14. 2.14 PSpice Schematics
      1. 2.14.1 PSpice Schematics Layout
      2. 2.14.2 PSpice A/D
      3. 2.14.3 Probe
      4. 2.14.4 OrCAD Capture
    15. 2.15 Importing Microsim Schematics in OrCAD Capture
    16. Problems
    17. Suggested Reading
  12. Chapter 3 Defining Output Variables
    1. 3.1 Introduction
    2. 3.2 DC Sweep and Transient Analysis
      1. 3.2.1 Voltage Output
      2. 3.2.2 Current Output
      3. 3.2.3 Power Output
    3. 3.3 AC Analysis
      1. 3.3.1 Voltage Output
      2. 3.3.2 Current Output
    4. 3.4 Output Markers
    5. 3.5 Noise Analysis
    6. Summary
  13. Chapter 4 Voltage and Current Sources
    1. 4.1 Introduction
    2. 4.2 Sources Modeling
      1. 4.2.1 Pulse Source
      2. 4.2.2 Piecewise Linear Source
      3. 4.2.3 Sinusoidal Source
      4. 4.2.4 Exponential Source
      5. 4.2.5 Single-Frequency Frequency Modulation Source
      6. 4.2.6 AC Sources
    3. 4.3 Independent Sources
      1. 4.3.1 Independent Voltage Source
      2. 4.3.2 Independent Current Source
      3. 4.3.3 Schematic Independent Sources
    4. 4.4 Dependent Sources
      1. 4.4.1 Polynomial Source
      2. 4.4.2 Voltage-Controlled Voltage Source
      3. 4.4.3 Current-Controlled Current Source
      4. 4.4.4 Voltage-Controlled Current Source
      5. 4.4.5 Current-Controlled Voltage Source
      6. 4.4.6 Schematic-Dependent Sources
    5. 4.5 Behavioral Device Modeling
      1. 4.5.1 VALUE
      2. 4.5.2 TABLE
      3. 4.5.3 LAPLACE
      4. 4.5.4 FREQ
    6. Summary
    7. Problems
    8. Suggested Reading
  14. Chapter 5 Passive Elements
    1. 5.1 Introduction
    2. 5.2 Modeling of Elements
      1. 5.2.1 Some Model Statements
    3. 5.3 Operating Temperature
      1. 5.3.1 Some Temperature Statements
    4. 5.4 RLC Elements
      1. 5.4.1 Resistor
      2. 5.4.2 Capacitor
      3. 5.4.3 Inductor
    5. 5.5 Magnetic Elements and Transformers
      1. 5.5.1 Linear Magnetic Circuits
      2. 5.5.2 Nonlinear Magnetic Circuits
    6. 5.6 Lossless Transmission Lines
    7. 5.7 Switches
      1. 5.7.1 Voltage-Controlled Switch
      2. 5.7.2 Current-Controlled Switch
      3. 5.7.3 Time-Dependent Switches
    8. Summary
    9. Problems
    10. Suggested Reading
  15. Chapter 6 Dot Commands
    1. 6.1 Introduction
    2. 6.2 Models
      1. 6.2.1 .MODEL (Model)
      2. 6.2.2 .SUBCKT (Subcircuit)
      3. 6.2.3 .ENDS (End of Subcircuit)
      4. 6.2.4 .FUNC (Function)
      5. 6.2.5 .GLOBAL (Global)
      6. 6.2.6 .LIB (Library File)
      7. 6.2.7 .INC (Include File)
      8. 6.2.8 .PARAM (Parameter)
      9. 6.2.9 .STEP (Parametric Analysis)
    3. 6.3 Types of Output
      1. 6.3.1 .PRINT (Print)
      2. 6.3.2 .PLOT (Plot)
      3. 6.3.3 .PROBE (Probe)
      4. 6.3.4 Probe Output
      5. 6.3.5 .WIDTH (Width)
    4. 6.4 Operating Temperature and End of Circuit
    5. 6.5 Options
    6. 6.6 DC Analysis
      1. 6.6.1 .OP (Operating Point)
      2. 6.6.2 .NODESET (Nodeset)
      3. 6.6.3 .SENS (Sensitivity Analysis)
      4. 6.6.4 .TF (Small-Signal Transfer Function)
      5. 6.6.5 .DC (DC Sweep)
    7. 6.7 AC Analysis
    8. 6.8 Noise Analysis
    9. 6.9 Transient Analysis
      1. 6.9.1 .IC (Initial Transient Conditions)
      2. 6.9.2 .TRAN (Transient Analysis)
    10. 6.10 Fourier Analysis
    11. 6.11 Monte Carlo Analysis
    12. 6.12 Sensitivity and Worst-Case Analysis
    13. Summary
    14. Problems
    15. Suggested Reading
  16. Chapter 7 Diode Rectifiers
    1. 7.1 Introduction
    2. 7.2 Diode Model
    3. 7.3 Diode Statement
    4. 7.4 Diode Characteristics
    5. 7.5 Diode Parameters
      1. 7.5.1 Modeling Zener Diodes
      2. 7.5.2 Tabular Data
    6. 7.6 Diode Rectifiers
      1. 7.6.1 Examples of Single-Phase Diode Rectifiers
      2. 7.6.2 Examples of Three-Phase Diode Rectifiers
    7. 7.7 Laboratory Experiments
      1. 7.7.1 Experiment DR.1
      2. 7.7.2 Experiment DR.2
      3. 7.7.3 Experiment DR.3
    8. Summary
    9. Design Problems
    10. Suggested Reading
  17. Chapter 8 DC–DC Converters
    1. 8.1 Introduction
    2. 8.2 DC Switch Chopper
    3. 8.3 BJT SPICE Model
    4. 8.4 BJT Parameters
    5. 8.5 Examples of BJT DC–DC Converters
    6. 8.6 MOSFET Choppers
    7. 8.7 MOSFET Parameters
    8. 8.8 Examples of MOSFET DC–DC Converters
    9. 8.9 IGBT Model
    10. 8.10 Examples of IGBT DC-DC Converters
    11. 8.11 Laboratory Experiment
      1. 8.11.1 Experiment TP.1
      2. 8.11.2 Experiment TP.2
    12. Summary
    13. Design Problems
    14. Suggested Reading
  18. Chapter 9 Pulse Width–Modulated Inverters
    1. 9.1 Introduction
    2. 9.2 Voltage-Source Inverters
      1. 9.2.1 Examples of Single-Phase PWM Inverters
      2. 9.2.2 Examples of Single-Phase SPWM Inverters
      3. 9.2.3 Examples of Three-Phase PWM Inverters
      4. 9.2.4 Examples of Three-Phase SPWM Inverters
    3. 9.3 Current-Source Inverters
      1. 9.3.1 Example of Current-Source Inverter
    4. 9.4 DC Link Inverters
      1. 9.4.1 Example of DC Link Three-Phase Inverter
    5. 9.5 Laboratory Experiments
      1. 9.5.1 Experiment PW.1
      2. 9.5.2 Experiment PW.2
      3. 9.5.3 Experiment PW.3
      4. 9.5.4 Experiment PW.4
      5. 9.5.5 Experiment PW.5
      6. 9.5.6 Experiment PW.6
      7. 9.5.7 Experiment PW.7
    6. Summary
    7. Design Problems
    8. Suggested Reading
  19. Chapter 10 Resonant-Pulse Inverters
    1. 10.1 Introduction
    2. 10.2 Resonant-Pulse Inverters
      1. 10.2.1 Examples of Resonant-Pulse Inverters
    3. 10.3 Zero-Current Switching Converters
      1. 10.3.1 Examples of Zero-Current Switching Resonant Inverters
    4. 10.4 Zero-Voltage Switching Converter
      1. 10.4.1 Examples of Zero-Voltage Switching Converters
    5. 10.5 Laboratory Experiments
      1. 10.5.1 Experiment RI.1
      2. 10.5.2 Experiment RI.2
      3. 10.5.3 Experiment RI.3
      4. 10.5.4 Experiment RI.4
      5. 10.5.5 Experiment RI.5
      6. 10.5.6 Experiment RI.6
    6. Summary
    7. Design Problems
    8. Suggested Reading
  20. Chapter 11 Controlled Rectifiers
    1. 11.1 Introduction
    2. 11.2 AC Thyristor Model
    3. 11.3 Controlled Rectifiers
    4. 11.4 Examples of Controlled Rectifiers
      1. 11.4.1 Examples of Single-Phase Controlled Rectifiers
      2. 11.4.2 Examples of Three-Phase Controlled Rectifiers
    5. 11.5 Switched Thyristor DC Model
    6. 11.6 GTO Thyristor Model
    7. 11.7 Example of Forced-Commutated Rectifiers
    8. 11.8 Laboratory Experiments
      1. 11.8.1 Experiment TC.1
      2. 11.8.2 Experiment TC.2
      3. 11.8.3 Experiment TC.3
    9. Summary
    10. Design Problems
    11. Suggested Reading
  21. Chapter 12 AC Voltage Controllers
    1. 12.1 Introduction
    2. 12.2 AC Thyristor Model
    3. 12.3 Phase-Controlled AC Voltage Controllers
    4. 12.4 Examples of Phase-Controlled AC Voltage Controllers
      1. 12.4.1 Examples of Single-Phase AC Voltage Controllers
      2. 12.4.2 Examples of Three-Phase AC Voltage Controllers
      3. 12.4.3 Examples of Single-Phase AC Voltage Controllers with an Output Filter
    5. 12.5 AC Voltage Controllers with PWM Control
      1. 12.5.1 Example of Single-Phase AC Voltage Controller with PWM Control
    6. 12.6 Cycloconverters
      1. 12.6.1 Example of Single-Phase Cycloconverter
    7. 12.7 Laboratory Experiments
      1. 12.7.1 Experiment AC.1
      2. 12.7.2 Experiment AC.2
    8. Summary
    9. Design Problems
    10. Suggested Reading
  22. Chapter 13 Control Applications
    1. 13.1 Introduction
    2. 13.2 Op-Amp Circuits
      1. 13.2.1 DC Linear Models
      2. 13.2.2 AC Linear Models
      3. 13.2.3 Nonlinear Macromodels
      4. 13.2.4 Examples of Op-Amp Circuits
    3. 13.3 Control Systems
      1. 13.3.1 Examples of Control Circuits
    4. 13.4 Signal Conditioning Circuits
      1. 13.4.1 Examples of Signal Conditioning Circuits
    5. 13.5 Closed-Loop Current Control
      1. 13.5.1 Examples of Closed-Loop Control
    6. Problems
    7. Suggested Reading
  23. Chapter 14 Characteristics of Electrical Motors
    1. 14.1 Introduction
    2. 14.2 DC Motor Characteristics
      1. 14.2.1 Examples of DC Motor Controlled by DC–DC Converter
    3. 14.3 Induction Motor Characteristics
      1. 14.3.1 Examples of Induction Motor Characteristics
    4. Problems
    5. Suggested Reading
  24. Chapter 15 Simulation Errors, Convergence Problems, and Other Difficulties
    1. 15.1 Introduction
    2. 15.2 Large Circuits
    3. 15.3 Running Multiple Circuits
    4. 15.4 Large Outputs
    5. 15.5 Long Transient Runs
    6. 15.6 Convergence
      1. 15.6.1 DC Sweep
      2. 15.6.2 Bias-Point Calculation
      3. 15.6.3 Transient Analysis
    7. 15.7 Analysis Accuracy
    8. 15.8 Negative Component Values
    9. 15.9 Power-Switching Circuits
      1. 15.9.1 Model Parameters of Diodes and Transistors
      2. 15.9.2 Error Tolerances
      3. 15.9.3 Snubbing Resistor
      4. 15.9.4 Quasi-Steady-State Condition
    10. 15.10 Floating Nodes
    11. 15.11 Nodes with Fewer than Two Connections
    12. 15.12 Voltage Source and Inductor Loops
    13. 15.13 Running PSpice Files on SPICE
    14. 15.14 Running SPICE Files on PSpice
    15. 15.15 Using Earlier Version of Schematics
    16. Problems
    17. Suggested Reading
  25. Index

Product information

  • Title: SPICE for Power Electronics and Electric Power, 3rd Edition
  • Author(s): Muhammad H. Rashid
  • Release date: December 2017
  • Publisher(s): CRC Press
  • ISBN: 9781351833042