Skip to Content
Biometric Authentication: A Machine Learning Approach
book

Biometric Authentication: A Machine Learning Approach

by S. Y. Kung, M. W. Mak, S. H. Lin
September 2004
Intermediate to advanced
496 pages
13h 57m
English
Pearson
Content preview from Biometric Authentication: A Machine Learning Approach

2.4. Adaptive Classifiers

If individual patterns are available, one can build a statistical model for each class of person. A common approach is to model each class by a normal density so that the system estimates the corresponding mean feature vector and covariance matrix for each person. Using a prior distribution of the individuals in the database, the classification task is completed by computing the Bayesian a posteriori probability of each person, conditioned on the observations of the query. If log probability is computed, the classification process can be considered a nearest-neighbor search using the Mahalanobis distance metric.

There are other statistical approaches to pattern classification. First, the K-nearest-neighbor algorithm ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Advances in Biometrics for Secure Human Authentication and Recognition

Advances in Biometrics for Secure Human Authentication and Recognition

Dakshina Ranjan Kisku, Phalguni Gupta, Jamuna Kanta Sing
Touchless Fingerprint Biometrics

Touchless Fingerprint Biometrics

Ruggero Donida Labati, Vincenzo Piuri, Fabio Scotti
Signal and Image Processing for Biometrics

Signal and Image Processing for Biometrics

Amine Naït-Ali, Régis Fournier
Public-key Cryptography: Theory and Practice

Public-key Cryptography: Theory and Practice

Abhijit Das, C. E. Veni Madhavan

Publisher Resources

ISBN: 0131478249Purchase book