Skip to Content
Biometric Authentication: A Machine Learning Approach
book

Biometric Authentication: A Machine Learning Approach

by S. Y. Kung, M. W. Mak, S. H. Lin
September 2004
Intermediate to advanced
496 pages
13h 57m
English
Pearson
Content preview from Biometric Authentication: A Machine Learning Approach

9.6. Speaker Verification Based on Articulatory Features

Most traditional speaker verification systems are based on the modeling of short-term spectral information [306]. These systems compute the ratio of the likelihood of the genuine speaker model to the likelihood of the impostor model given some spectral features extracted from a claimant. The resulting likelihood ratio is compared against a threshold for decision making. The advantage of using short-term spectral information is that promising results are obtainable from a limited amount of training data. However, spectral information is only one of many sources suitable for speaker verification. For example, in addition to the spectral information, humans make use of high-level information, ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Advances in Biometrics for Secure Human Authentication and Recognition

Advances in Biometrics for Secure Human Authentication and Recognition

Dakshina Ranjan Kisku, Phalguni Gupta, Jamuna Kanta Sing
Touchless Fingerprint Biometrics

Touchless Fingerprint Biometrics

Ruggero Donida Labati, Vincenzo Piuri, Fabio Scotti
Signal and Image Processing for Biometrics

Signal and Image Processing for Biometrics

Amine Naït-Ali, Régis Fournier
Public-key Cryptography: Theory and Practice

Public-key Cryptography: Theory and Practice

Abhijit Das, C. E. Veni Madhavan

Publisher Resources

ISBN: 0131478249Purchase book