Skip to Content
Building Computer Vision Projects with OpenCV 4 and C++
book

Building Computer Vision Projects with OpenCV 4 and C++

by David Millan Escriva, Prateek Joshi, Vinicius G. Mendonca, Roy Shilkrot
March 2019
Intermediate to advanced
538 pages
13h 38m
English
Packt Publishing
Content preview from Building Computer Vision Projects with OpenCV 4 and C++

Deep learning in OpenCV

The deep learning module was introduced to OpenCV in version 3.1 as a contribute module. This was moved to part of OpenCV in 3.3, but it was not widely adopted by developers until versions 3.4.3 and 4.

OpenCV implements deep learning only for inference, which means that you cannot create your own deep learning architecture and train in OpenCV; you can only import a pre-trained model, execute it under OpenCV library, and use it as feedforward (inference) to obtain the results.

The most important reason to implement the feedforward method is to optimize OpenCV to speed up computing time and performance in inference. Another reason to not implement backward methods is to avoid wasting time developing something that other ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Learning OpenCV 4 Computer Vision with Python 3 - Third Edition

Learning OpenCV 4 Computer Vision with Python 3 - Third Edition

Joseph Howse, Joe Minichino
Modern CMake for C++

Modern CMake for C++

Rafał Świdziński

Publisher Resources

ISBN: 9781838644673Supplemental Content