Skip to Main Content
Deep Reinforcement Learning Hands-On
book

Deep Reinforcement Learning Hands-On

by Oleg Vasilev, Maxim Lapan, Martijn van Otterlo, Mikhail Yurushkin, Basem O. F. Alijla
June 2018
Intermediate to advanced content levelIntermediate to advanced
546 pages
13h 30m
English
Packt Publishing
Content preview from Deep Reinforcement Learning Hands-On

Chapter 3. Deep Learning with PyTorch

In the previous chapter, we became familiar with open source libraries, which provided us with a collection of RL environments. However, recent developments in RL, especially its combination with deep learning (DL), now make it possible to solve much more complex and challenging problems than before. This is partly due to the development of DL methods and tools.

This chapter is dedicated to one such tool, which makes it possible to implement complex DL models in just a bunch of lines of Python code. The chapter doesn't pretend to be a complete DL manual, as the field is very wide and dynamic. The goal is to make you familiar with the PyTorch library specifics and implementation details, assuming that you're ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Grokking Deep Reinforcement Learning

Grokking Deep Reinforcement Learning

Miguel Morales

Publisher Resources

ISBN: 9781788834247Supplemental Content