Skip to Main Content
Deep Reinforcement Learning Hands-On
book

Deep Reinforcement Learning Hands-On

by Oleg Vasilev, Maxim Lapan, Martijn van Otterlo, Mikhail Yurushkin, Basem O. F. Alijla
June 2018
Intermediate to advanced content levelIntermediate to advanced
546 pages
13h 30m
English
Packt Publishing
Content preview from Deep Reinforcement Learning Hands-On

The Actor-Critic (A2C) method

The first method that we'll apply to our walking robot problem is A2C, which we experimented with in part three of the book. This choice of method is quite obvious, as A2C is very easy to adapt to the continuous action domain. As a quick refresher, A2C's idea is to estimate the gradient of our policy as

The Actor-Critic (A2C) method

. The The Actor-Critic (A2C) method policy is supposed to provide to us the probability distribution of actions given the observed state. The quantity is called a critic, equals to the value of the state and is trained using the Mean Square Error ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Grokking Deep Reinforcement Learning

Grokking Deep Reinforcement Learning

Miguel Morales

Publisher Resources

ISBN: 9781788834247Supplemental Content