We create a sequential model with the following layers:
- Dense layer with an input of (self.latent_dim) and output of (*, 256 units )
- Leaky ReLU layer applies this function to incoming data
- Batch Normalization: normalizes the data
- Dense layer of 512: Layer with output of (*, 512 units)
- Leaky ReLU layer applies this function to incoming data
- Batch normalization
- Dense layer of (*, 1024)
- Leaky RELU
- Batch normalization
- Dense layer of size (*, 256) with activation tanh
- Reshape back to img_shape
- Add some noise to the model of type shape=(self.latent_dim,):
def build_generator(self): model = Sequential() model.add(Dense(256, input_dim=self.latent_dim)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense( ...