Skip to Content
Keras Deep Learning Cookbook
book

Keras Deep Learning Cookbook

by Rajdeep Dua, Sujit Pal, Manpreet Singh Ghotra
October 2018
Intermediate to advanced
252 pages
6h 49m
English
Packt Publishing
Content preview from Keras Deep Learning Cookbook

Word embedding

Word embedding is an NLP technique for representing words and documents using a dense vector representation compared to the bag of word techniques, which used a large sparse vector representation. Embeddings are a class of NLP methods that aim to project the semantic meaning of words into a geometric space. This is accomplished by linking a numeric vector to each word in a dictionary so that the distance between any two vectors captures the part of the semantic relationship between the two associated words. The geometric space formed by these vectors is called an embedding space.

The two most popular techniques for learning word embeddings are global vectors for word representation (GloVe) and word to vector representation ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Applied Deep Learning with Keras

Applied Deep Learning with Keras

Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme
Advanced Deep Learning with Keras

Advanced Deep Learning with Keras

Rowel Atienza, Neeraj Verma, Valerio Maggio
The Applied TensorFlow and Keras Workshop

The Applied TensorFlow and Keras Workshop

Harveen Singh Chadha, Luis Capelo, Abhranshu Bagchi, Achint Chaudhary, Vishal Chauhan, Alexis Rutherford, Subhash Sundaravadivelu

Publisher Resources

ISBN: 9781788621755Supplemental Content