Skip to Content
Keras Deep Learning Cookbook
book

Keras Deep Learning Cookbook

by Rajdeep Dua, Sujit Pal, Manpreet Singh Ghotra
October 2018
Intermediate to advanced
252 pages
6h 49m
English
Packt Publishing
Content preview from Keras Deep Learning Cookbook

Introduction – shared input layer

In this section, we show how multiple convolutional layers with differently sized kernels interpret an image input. The model takes colored CIFAR images with a size of 32 x 32 x 3 pixels. There are two CNN feature extraction submodels that share this input; the first has a kernel size of 4, the second a kernel size of 8. The outputs from these feature extraction sub-models are flattened into vectors and concatenated into one long vector, and this is passed on to a fully connected layer for interpretation before a final output layer makes a binary classification.

This is the model topology:

  • One input layer
  • Two feature extraction layers
  • One interpretation layer
  • One dense output layer
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Applied Deep Learning with Keras

Applied Deep Learning with Keras

Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme
Advanced Deep Learning with Keras

Advanced Deep Learning with Keras

Rowel Atienza, Neeraj Verma, Valerio Maggio
The Applied TensorFlow and Keras Workshop

The Applied TensorFlow and Keras Workshop

Harveen Singh Chadha, Luis Capelo, Abhranshu Bagchi, Achint Chaudhary, Vishal Chauhan, Alexis Rutherford, Subhash Sundaravadivelu

Publisher Resources

ISBN: 9781788621755Supplemental Content