October 2018
Intermediate to advanced
252 pages
6h 49m
English
for iteration in range(1, 200): print() print('-' * 50) print('Iteration', iteration) model.fit(x_train, y_train, batch_size=BATCH_SIZE, epochs=1, validation_data=(x_val, y_val)) for i in range(10): ind = np.random.randint(0, len(x_val)) rowx, rowy = x_val[np.array([ind])], y_val[np.array([ind])] preds = model.predict_classes(rowx, verbose=0) q = ctable.decode(rowx[0]) correct = ctable.decode(rowy[0]) guess = ctable.decode(preds[0], calc_argmax=False) print('Q', q[::-1] if REVERSE else q, end=' ') print('T', correct, end=' ') if correct == guess: print(colors.ok + '' + colors.close, end=' ') else: print(colors.fail + '☒' + colors.close, end=' ') print(guess) ...