Skip to Content
Keras Deep Learning Cookbook
book

Keras Deep Learning Cookbook

by Rajdeep Dua, Sujit Pal, Manpreet Singh Ghotra
October 2018
Intermediate to advanced
252 pages
6h 49m
English
Packt Publishing
Content preview from Keras Deep Learning Cookbook

Optimization with Adam

SGD, in contrast to batch gradient descent, performs a parameter update for each training example, x(i) and label y(i):

Θ = Θ - η∇Θj(Θ, x(i), y(i))

Adaptive Moment Estimation (Adamcomputes adaptive learning rates for each parameter. Like AdaDelta, Adam not only stores the decaying average of past squared gradients but additionally stores the momentum change for each parameter. Adam works well in practice and is one of the most used optimization methods today.

Adam stores the exponentially decaying average of past gradients (mt) in addition to the decaying average of past squared gradients (like Adadelta and RMSprop). Adam behaves like a heavy ball with friction running down the slope leading to a flat minima in the ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Applied Deep Learning with Keras

Applied Deep Learning with Keras

Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme
Advanced Deep Learning with Keras

Advanced Deep Learning with Keras

Rowel Atienza, Neeraj Verma, Valerio Maggio
The Applied TensorFlow and Keras Workshop

The Applied TensorFlow and Keras Workshop

Harveen Singh Chadha, Luis Capelo, Abhranshu Bagchi, Achint Chaudhary, Vishal Chauhan, Alexis Rutherford, Subhash Sundaravadivelu

Publisher Resources

ISBN: 9781788621755Supplemental Content