Skip to Content
Learning Probabilistic Graphical Models in R
book

Learning Probabilistic Graphical Models in R

by David Bellot
April 2016
Beginner to intermediate
250 pages
5h 38m
English
Packt Publishing
Content preview from Learning Probabilistic Graphical Models in R

Chapter 4. Bayesian Modeling – Basic Models

After learning how to represent graphical models, how to compute posterior distributions, how to use parameters with maximum likelihood estimation, and even how to learn the same models when data is missing and variables are hidden, we are going to delve into the problem of modeling using the Bayesian paradigm. In this chapter, we will see that some simple problems are not easy to model and compute and will necessitate specific solutions. First of all, inference is a difficult problem and the junction tree algorithm only solves specific problems. Second, the representation of the models has so far been based on discrete variables.

In this chapter we will introduce simple, yet powerful, Bayesian models, ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Learning Bayesian Models with R

Learning Bayesian Models with R

Hari Manassery Koduvely
Deep Learning for Chest Radiographs

Deep Learning for Chest Radiographs

Yashvi Chandola, Jitendra Virmani, H.S Bhadauria, Papendra Kumar

Publisher Resources

ISBN: 9781784392055Supplemental Content