Skip to Content
Machine Learning: End-to-End guide for Java developers
book

Machine Learning: End-to-End guide for Java developers

by Richard M. Reese, Jennifer L. Reese, Boštjan Kaluža, Dr. Uday Kamath, Krishna Choppella
October 2017
Intermediate to advanced
1159 pages
26h 10m
English
Packt Publishing
Content preview from Machine Learning: End-to-End guide for Java developers

Bayes' theorem

The probability of an event E conditioned on evidence X is proportional to the prior probability of the event and the likelihood of the evidence given that the event has occurred. This is Bayes' Theorem:

Bayes' theorem

P(X) is the normalizing constant, which is also called the marginal probability of X. P(E) is the prior, and P(X|E) is the likelihood. P(E|X) is also called the posterior probability.

Bayes' Theorem expressed in terms of the posterior and prior odds is known as Bayes' Rule.

Density estimation

Estimating the hidden probability density function of a random variable from sample data randomly drawn from the population is known as density ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

DevOps Tools for Java Developers

DevOps Tools for Java Developers

Stephen Chin, Melissa McKay, Ixchel Ruiz, Baruch Sadogursky

Publisher Resources

ISBN: 9781788622219Supplemental Content