Skip to Content
Machine Learning: End-to-End guide for Java developers
book

Machine Learning: End-to-End guide for Java developers

by Richard M. Reese, Jennifer L. Reese, Boštjan Kaluža, Dr. Uday Kamath, Krishna Choppella
October 2017
Intermediate to advanced
1159 pages
26h 10m
English
Packt Publishing
Content preview from Machine Learning: End-to-End guide for Java developers

Chapter 4. Semi-Supervised and Active Learning

In Chapter 2, Practical Approach to Real-World Supervised Learning and Chapter 3, Unsupervised Machine Learning Techniques, we discussed two major groups of machine learning techniques which apply to opposite situations when it comes to the availability of labeled data—one where all target values are known and the other where none are. In contrast, the techniques in this chapter address the situation when we must analyze and learn from data that is a mix of a small portion with labels and a large number of unlabeled instances.

In speech and image recognition, a vast quantity of data is available, and in various forms. However, the cost of labeling or classifying all that data is costly and therefore, ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

DevOps Tools for Java Developers

DevOps Tools for Java Developers

Stephen Chin, Melissa McKay, Ixchel Ruiz, Baruch Sadogursky

Publisher Resources

ISBN: 9781788622219Supplemental Content