Skip to Content
Machine Learning: End-to-End guide for Java developers
book

Machine Learning: End-to-End guide for Java developers

by Richard M. Reese, Jennifer L. Reese, Boštjan Kaluža, Dr. Uday Kamath, Krishna Choppella
October 2017
Intermediate to advanced
1159 pages
26h 10m
English
Packt Publishing
Content preview from Machine Learning: End-to-End guide for Java developers

Basic naive Bayes classifier baseline

As per the rules of the challenge, the participants had to outperform the basic naive Bayes classifier to qualify for prizes, which makes an assumption that features are independent (refer to Chapter 1, Applied Machine Learning Quick Start).

The KDD Cup organizers run the vanilla naive Bayes classifier, without any feature selection or hyperparameter adjustments. For the large dataset, the overall scores of the naive Bayes on the test set were as follows:

  • Churn problem: AUC = 0.6468
  • Appetency problem: AUC = 0.6453
  • Upselling problem: AUC=0.7211

Note that the baseline results are reported for large dataset only. Moreover, while both training and test datasets are provided at the KDD Cup site, the actual true labels ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

DevOps Tools for Java Developers

DevOps Tools for Java Developers

Stephen Chin, Melissa McKay, Ixchel Ruiz, Baruch Sadogursky

Publisher Resources

ISBN: 9781788622219Supplemental Content