Skip to Content
Machine Learning: End-to-End guide for Java developers
book

Machine Learning: End-to-End guide for Java developers

by Richard M. Reese, Jennifer L. Reese, Boštjan Kaluža, Dr. Uday Kamath, Krishna Choppella
October 2017
Intermediate to advanced
1159 pages
26h 10m
English
Packt Publishing
Content preview from Machine Learning: End-to-End guide for Java developers

Data transformation and preprocessing

In this section, we will cover the broad topic of data transformation. The main idea of data transformation is to take the input data and transform it in careful ways so as to clean it, extract the most relevant information from it, and to turn it into a usable form for further analysis and learning. During these transformations, we must only use methods that are designed while keeping in mind not to add any bias or artifacts that would affect the integrity of the data.

Feature construction

In the case of some datasets, we need to create more features from features we are already given. Typically, some form of aggregation is done using common aggregators such as average, sum, minimum, or maximum to create additional ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

DevOps Tools for Java Developers

DevOps Tools for Java Developers

Stephen Chin, Melissa McKay, Ixchel Ruiz, Baruch Sadogursky

Publisher Resources

ISBN: 9781788622219Supplemental Content