Training the baseline model

As you know, we have selected the RandomForestRegressor algorithm. We will be using the scikit-learn library to train the model. These are the steps we need to follow:

  1. Splitting the training and testing dataset
  2. Splitting prediction labels for the training and testing dataset
  3. Converting sentiment scores into the numpy array
  4. Training the ML model

So, let's implement each of these steps one by one.

Splitting the training and testing dataset

We have 10 years of data values. So for training purposes, we will be using 8 years of the data, which means the dataset from 2007 to 2014. For testing purposes, we will be using 2 years of the data, which means data from 2015 and 2016. You can refer to the code snippet in the following screenshot ...

Get Machine Learning Solutions now with the O’Reilly learning platform.

O’Reilly members experience live online training, plus books, videos, and digital content from nearly 200 publishers.