Skip to Content
Mastering Numerical Computing with NumPy
book

Mastering Numerical Computing with NumPy

by Umit Mert Cakmak, Tiago Antao, Mert Cuhadaroglu
June 2018
Intermediate to advanced
248 pages
5h 27m
English
Packt Publishing
Content preview from Mastering Numerical Computing with NumPy

Matrix decomposition

Matrix decomposition, or factorization methods, involves calculating the constituents of a matrix so that they can be used to simplify more demanding matrix operations. In practice, this means breaking the matrix you have into more than one matrix so that, when you calculate the product of these smaller matrices, you get your original matrix back. Some examples of matrix decomposition methods are singular-value decomposition (SVD), eigenvalue decomposition, Cholesky decomposition, lower–upper (LU), and QR decomposition.

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Numerical Computing with Python

Numerical Computing with Python

Pratap Dangeti, Allen Yu, Claire Chung, Aldrin Yim
Scientific Computing with Python - Second Edition

Scientific Computing with Python - Second Edition

Claus Führer, Claus Fuhrer, Jan Erik Solem, Olivier Verdier
SciPy and NumPy

SciPy and NumPy

Eli Bressert

Publisher Resources

ISBN: 9781788993357Supplemental Content