Skip to Content
Mastering Numerical Computing with NumPy
book

Mastering Numerical Computing with NumPy

by Umit Mert Cakmak, Tiago Antao, Mert Cuhadaroglu
June 2018
Intermediate to advanced
248 pages
5h 27m
English
Packt Publishing
Content preview from Mastering Numerical Computing with NumPy

Supervised learning and linear regression 

Machine learning gives computer systems an ability to learn without explicit programming. One of the most common types of machine learning is supervised learning. Supervised learning consists of a set of different algorithms which formulates a learning problem and solves them by mapping inputs and outputs using historical data. The algorithms analyze the input and a corresponding output, then link them together to find a relationship (learning). Finally, for the new given dataset, it will predict the output by using this learning.

In order to differentiate between supervised and unsupervised learning, we can think about input/output-based modeling. In supervised learning, the computer system will ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Numerical Computing with Python

Numerical Computing with Python

Pratap Dangeti, Allen Yu, Claire Chung, Aldrin Yim
Scientific Computing with Python - Second Edition

Scientific Computing with Python - Second Edition

Claus Führer, Claus Fuhrer, Jan Erik Solem, Olivier Verdier
SciPy and NumPy

SciPy and NumPy

Eli Bressert

Publisher Resources

ISBN: 9781788993357Supplemental Content