Skip to Content
Mastering Numerical Computing with NumPy
book

Mastering Numerical Computing with NumPy

by Umit Mert Cakmak, Tiago Antao, Mert Cuhadaroglu
June 2018
Intermediate to advanced
248 pages
5h 27m
English
Packt Publishing
Content preview from Mastering Numerical Computing with NumPy

Summary

Linear regression is one of the most common techniques for modeling the relationship between continuous variables. The application of this method is very widely used in the industry. We started modeling part of the book on linear regression, not just because it's very popular, but because it's a relatively easy technique and contains most of the elements which almost every machine learning algorithm has.

In this chapter, we learned about supervised and unsupervised learning and built a linear regression model by using the Boston housing dataset. We touched upon different important concepts such as hyperparameters, loss functions, and gradient descent. The main purpose of this chapter was to give you sufficient knowledge so that you ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Numerical Computing with Python

Numerical Computing with Python

Pratap Dangeti, Allen Yu, Claire Chung, Aldrin Yim
Scientific Computing with Python - Second Edition

Scientific Computing with Python - Second Edition

Claus Führer, Claus Fuhrer, Jan Erik Solem, Olivier Verdier
SciPy and NumPy

SciPy and NumPy

Eli Bressert

Publisher Resources

ISBN: 9781788993357Supplemental Content