Skip to Content
Mastering Numerical Computing with NumPy
book

Mastering Numerical Computing with NumPy

by Umit Mert Cakmak, Tiago Antao, Mert Cuhadaroglu
June 2018
Intermediate to advanced
248 pages
5h 27m
English
Packt Publishing
Content preview from Mastering Numerical Computing with NumPy

Computing the norm and determinant

This subsection will introduce two important values in linear algebra, namely the norm and determinant. Briefly, the norm gives length of a vector. The most commonly used norm is the L2-norm, which is also known as the Euclidean norm. Formally, the Lp-norm of x is calculated as follows:

The L0-norm is actually the cardinality of a vector. You can calculate it by just counting the total number of non-zero elements. For example, the vector A =[2,5,9,0] contains three non-zero elements, therefore ||A||0 = 3The following code block shows the same norm calculation with numpy:

In [24]: import numpy as np  x = ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Numerical Computing with Python

Numerical Computing with Python

Pratap Dangeti, Allen Yu, Claire Chung, Aldrin Yim
Scientific Computing with Python - Second Edition

Scientific Computing with Python - Second Edition

Claus Führer, Claus Fuhrer, Jan Erik Solem, Olivier Verdier
SciPy and NumPy

SciPy and NumPy

Eli Bressert

Publisher Resources

ISBN: 9781788993357Supplemental Content