Skip to Content
Neural Network Projects with Python
book

Neural Network Projects with Python

by James Loy
February 2019
Beginner to intermediate
308 pages
7h 42m
English
Packt Publishing
Content preview from Neural Network Projects with Python

Contrastive loss

This new paradigm of training a neural network for distance-based predictions instead of classification-based predictions requires a new loss function. Recall that in previous chapters, we used simple loss functions such as categorical cross-entropy to measure the accuracy of our predictions in classification problems.

In distance-based predictions, loss functions based on accuracy would not work. Therefore, we require a new distance-based loss function to train our Siamese neural network for facial recognition. The distance-based loss function that we will be using is called the contrastive loss function.

Take a look at the following variables:

  • Ytrue: Let Ytrue be 1 if the two input images are from the same subject (same ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning with Python Cookbook

Machine Learning with Python Cookbook

Chris Albon

Publisher Resources

ISBN: 9781789138900Supplemental Content