Let's try denoising the images with a deeper model and more filters in each convolutional layer.
We start by defining a new Sequential class:
conv_autoencoder = Sequential()
Next, we add three convolutional layers as our encoder, with 32, 16, and 8 filters:
conv_autoencoder.add(Conv2D(filters=32, kernel_size=(3,3), input_shape=(420,540,1), activation='relu', padding='same'))conv_autoencoder.add(Conv2D(filters=16, kernel_size=(3,3), activation='relu', padding='same'))conv_autoencoder.add(Conv2D(filters=8, kernel_size=(3,3), activation='relu', padding='same'))
Similarly for the decoder, we add three convolutional layers with 8, 16, and 32 filters:
conv_autoencoder.add(Conv2D(filters=8, kernel_size=(3,3), activation='relu', ...