Skip to Content
Practical Time Series Analysis
book

Practical Time Series Analysis

by PKS Prakash, Avishek Pal
September 2017
Beginner
244 pages
5h 20m
English
Packt Publishing
Content preview from Practical Time Series Analysis

MLPs for time series forecasting

In this section, we will use MLPs to develop time series forecasting models. The dataset used for these examples is on air pollution measured by concentration of particulate matter (PM) of diameter less than or equal to 2.5 micrometers. There are other variables such as air pressure, air temperature, dew point, and so on. A couple of time series models have been developed-one on air pressure and the other on pm 2.5. The dataset has been downloaded from the UCI Machine Learning Repository. The link to the problem's description and datasets is https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data.

The code for the time series model of air pressure is in the Jupyter notebook code/Chapter_5_Air Pressure_Time_Series_Forecasting_by_MLP.ipynb ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Practical Time Series Analysis

Practical Time Series Analysis

Aileen Nielsen

Publisher Resources

ISBN: 9781788290227Supplemental Content