Skip to Content
Practical Time Series Analysis
book

Practical Time Series Analysis

by PKS Prakash, Avishek Pal
September 2017
Beginner
244 pages
5h 20m
English
Packt Publishing
Content preview from Practical Time Series Analysis

Recurrent neural networks for time series forecasting

We will continue to use the dataset on air pollution to demonstrate recurrent neural networks for time series forecasting. LSTM is used to forecast air pressure and GRU is demonstrated on pm2.5.

Reading and preprocessing the data remains the same as we have done for the examples on MLPs. The original dataset is split into two sets-train and validation, which are used for model training and validation respectively.

The makeXy function is used to generate arrays of regressors and targets-X_train, X_val, y_train and y_val. X_train, and X_val, as generated by the makeXy function, are 2D arrays of shape (number of samples, number of timesteps). However, the input to RNN layers must be of shape ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Practical Time Series Analysis

Practical Time Series Analysis

Aileen Nielsen

Publisher Resources

ISBN: 9781788290227Supplemental Content