Skip to Content
Practical Time Series Analysis
book

Practical Time Series Analysis

by PKS Prakash, Avishek Pal
September 2017
Beginner
244 pages
5h 20m
English
Packt Publishing
Content preview from Practical Time Series Analysis

Summary

In this chapter, we covered auto-regressive models such as a MA model to capture serial correlation using error relationship. On similar lines, AR models were covered, which set up the forecasting using the lags as dependent observations. The AR models are good to capture trend information. The ARMA-based approach was also illustrated, which integrates AR and MA models to capture any time-based trends and catastrophic events leading to a lot of error that will take time to correct such as an economy meltdown. All these models assume stationarity; in scenarios where stationarity is not present, a differencing-based model such as ARIMA is proposed, which performs differencing in time series datasets to remove any trend-related components. ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Practical Time Series Analysis

Practical Time Series Analysis

Aileen Nielsen

Publisher Resources

ISBN: 9781788290227Supplemental Content